Modify the Transformation Matrix below and apply it to see what happens to the surface!
Your browser doesn't support HTML5 canvas.
Reset Graph
Transform!
Transformation Matrix:
x
z =
7xy/e^(x^2+y^2)
-4x/(x^2+y^2+1)
x^2 + y^2
1/(y-x^2)
2 - x^2 - y^2
x^2 - y^2
(x+y)/(x-y)
5-x^2-4x-y^2
-3xy/(x^3+y^3)
e^-(x^2 + y^2)
Sqrt(4-x^2-y^2)
7x/e^(x^5+y^2)
2 + x/4 + y/2
3x + 5y - 1
arcsin(x + y)
arccos(y-x^2)
e^(x^2 + 2x - y)
Sin(x^2 + y^2)
Cos(x^2 + y^2)
1/Cos(xy)
2y^3+3x^2-6xy
(10x^2y - 5x^2 - 4y^2 - x^4 - 2y^4)/2
x^3-y^2-x
x^4 + y^4 - 4xy + 1
3 + x^3 + y^3 - 3xy
y^4 - x^3 - 2y^2 + 3x
(x^2 + 4y^2)*e^(1-x^2-y^2)
ln(x^2-y)
ln(y-x^2)
Sin(x^2-y^2)
Cos(x)*Sin(y)
Sin(x+y)
x*sin(y)
ln(1+x^2-y)
Cos(xy)
Cos(x) - Sin(y)
Sin(2x) + Cos(y)
Cos(y)/Sin(x)
x*e^y + 1
Sqrt(x^2+y^2)
e^(abs(xy))-1
1-e^(abs(xy))
e^(xy) - 1
(2x^2+y^2)*e^(1-x^2-y^2)
e^sqrt(x^2+y^2)
int(sin(x+y)+1)
cos(sqrt(x^2+y^2))
(cos(x))^2*(cos(y))^2
sin(x^2+y^2)/(x^2 + y^2)
(2 - y^2 +x^2)*e^(1-x^2-y^2/4)
-1/sqrt(x^2+y^2)
(1-x^2-y^2)/sqrt(abs(1-x^2-y^2))
(x-2y)/(x^2+y^2)
((x^2-y^2)/(x^2+y^2))^2
sin(cos(x-y))
(x^2+y^2)/(xy)
x^2*y/(x^4+y^2)
(2x-y^2)/(2x^2+y)
-3xy/(x^2+y^2)
3/sqrt(x^2+y^2)-7/sqrt((x-2)^2+(y+1)^2)
xy(x^2-y^2)/(x^2+y^2)
ax^2+bxy+cy^2 + dx + ty
(a/2)((x+by/a)^2 + (x+d/a)^2 + (2ac-b^2)/a^2*(y+t*a/(2ac-b^2))^2-d^2/a^2-t^2/(2ac-b^2))
a((x+by/(2a))^2 + (4ac-b^2)y^2/(4a^2))
2+1/2*(4-.025*(x+2)^2+4*sin((x-4)/5)+2*cos(((x+y)/4))+5*sin(3-(x-y)/10)+0.2*cos((x+2*y)/20))
≤
x
≤
≤
y
≤
Number of Gridlines:
Format Axes:
x
-min:
x
-max:
y
-min:
y
-max:
z
-min:
z
-max:
upper
z
-clip:
lower
z
-clip: